

VEngine
User Guide

Ver0.1

Introduction： 4

Main Features： 4

Basic architecture: 4
1.Editor	 4

2.Player	 4

Project Window： 5

Project Composition: 6
1. Resource Directory	 6

2. Xcode project-related	 6

Editor: 7
1. Basic layout	 7

2. Basic operation	 9

Scene Node System: 10
1.The hierarchical structure of the scene	 10

2. What is Transform?	 10

3. What is a SceneNode?	 11

4. What is an Agent?	 11

Resource System: 12
1. Why do you need a Resource System?	 12

2. Supported resource formats	 12

3. Dynamic update of resources	 12

4. Import the COLLADA file	 12

Material System: 13
1. Why do I need a material script instead of writing a Shader?	 13

2. How does it work?	 13

3.Material Instance Script Format	 13

4. What is the parameter source?	 14

5. Built-in parameter source table	 15

6. The syntax of the material prototype script content	 15

7. Why use Shader nodes?	 16

8.Common Shader Node table	 16

9.Material Instance Format	 18

10.The syntax of the material instance script content	 18

Animation System: 20

1.How does it work?	 20

2.How to use animations?	 20

Agent System: 21
1.How does the Agent System work?	 21

2.How does a single Agent work?	 21

3. Write the simplest Agent code	 22

4. Use Agent	 24

5.SceneNodeAgent	 24

6.ActorAgent	 24

7.GUIAgent	 25

8. The simplest state operation	 25

GUI System: 27
1.GUI layers	 27

2.GUI Widget behavior	 27

Collision System: 28
1. Classification of collision detectors	 28

2.How does the global collision detector work?	 28

3. How does the local collision detector work?	 28

License System: 29
1. How does the license system work?	 29

2. How to create a license?	 29

Introduction：
VEngine is a 3D game engine, The underlying code is built by C++ and game logic is written

using Swift, It has an efficient and lightweight rendering architecture and collision detection
system as well as an easy-to-use programming interface, Anyone who has mastered Swift can
easily get started and implement game logic with the least amount of code. VEngine currently only
supports macOS and iOS, but it will support Android, Windows, PS4, XB1 and other platforms in
the near future, Implementing "write once, run anywhere" using Swift language.

Main Features：
1.Fully concurrent architecture that maximizes hardware performance.

2.Support for writing game logic modules using Swift.

3.The creative Material Scripting System writes cross-platform material through the material

scripting language, avoiding writing platform related shader code.

4.The creative Agent System organizes and manages logic modules to make the organization

of game logic clearer.

5.Powerful layered Animation Manager that enables weighted blending of multiple animations

to achieve smooth transitions.

6.Built-in an efficient lightweight Collision System that eases the burden on physical systems

and facilitates performance optimization.

7.The dynamic Lighting System supports three types of lights: parallel light, spotlight, and point

light, enabling dynamic soft shadows based on ESM.

8.Support COLLADA file format, can directly import COLLADA model, material, texture into the

resource system.

9.Powerful Resource System.

10.Easy-to-use Editor support.

11.Powerful Scene System.

12.Sound System based on OpenAL.

13.The abstraction layer of the graphics API, in order to support multiple graphics APIs,

currently supports OpenGL and Metal, and will support OpenGL ES, Vulkan, and DirectX in the
future.

14.Multi-platform support, core code written in C++ makes the entire game engine have a
natural cross-platform advantage, currently supports macOS and iOS platforms, and will support
Android, Windows, PS4, XB1 and other platforms in the future.

Basic architecture:
1.Editor

 The Editor is mainly used for editing the entire game project and scene. Through the editor, the
user can create a new scene, then add and place resources in the scene, edit GUI widgets, and
add game logic to the scene nodes in the scene.

2.Player

 The Player is used to run the game, usually one platform corresponds to one player.

Project Window：

As shown in the above figure, when VEngine starts running, the Project Window will pop up.
On the right side of the Project Window is a list of managed projects. Double-click any project to
open the Editor Window. On the left there is a Default Project and New button to create a default
project or empty project and open the editor window. You can also open an existing project by
Open button and remove the project by Remove button.

List of managed Projects.

Remove a Project
Open an existing Project
Create an empty Project
Create a default project

Project Composition:
1. Resource Directory

2. Xcode project-related

Sub path name Description

Audio Sound resources

Characters 3D model resources and animation resources including animation

Fonts Font resources

Licences License resource, a Player will display "unregistered" tag if no corresponding license is
generated

Materials Material resources, including material instances and material prototypes

Scenes Scene resources

Models Static model resources without animation

Textures Texture resources

Scripts Swift script resources, all game scripts must be placed in this directory

Sub path name Description

Frameworks The framework needed for macOS platform and iOS platform

iOSLogic.xcodeproj Logic for Player on the iOS Platform

iOSPlayer.xcodeproj Main body Xcode project of player of iOS platform

macOSLogic.xcodeproj Logic for Player on the macOS Platform

macOSPlayer.xcodeproj Main body Xcode project of player of macOS platform

macOSPlayer_Debug.xcodeproj The debug version of the main body Xcode project of the macOS
platform player does not copy resources after compilation.

Editor:

1. Basic layout

As shown in the above figure, this is the content displayed by the Editor after opening a scene,

as described below.

Used editor camera
Screen
aspect ratio

Resource Folders

Resource display
mode switching
button

Add and remove
Agent buttons

Add resource instance
button

Scene render layer enable view

a. The main scene layer is the object in the
scene other than the GUI

b. The main GUI layer is the higher priority GUI
layer

c. The second GUI layer is a lower priority GUI
layer

All scene nodes in
the current scene Select all the

properties of the
scene node

Cut the view of the GUI
layer

Navigator

Select the view of the GUI layer
range

Text font size, color
alignment, etc.

Refresh button for GUI Widget

Current layer text content

GUI layer combo box

2. Basic operation

a. Rotate the camera: Hold the Command key and press the left mouse button to drag the

mouse

b. Pan camera: Hold down the Option key Press the left mouse button

c. Tracking shot: Hold down Command key and press the right mouse button

d. The camera focuses on an object: Select a 3D object and press the shortcut key f

e. Switch 3D Manipulator to Translation Manipulator: Select a 3D object and press shortcut key

w

f. Switch 3D Manipulator to Rotation Manipulator: Select a 3D object and press shortcut key e

g. Switch 3D Manipulator to Scale Manipulator: Select a 3D object and press shortcut key r

Undo button

Switch Scene button

Scene Node System:
1.The hierarchical structure of the scene

As shown in the above figure, all the objects in the scene are tree hierarchically organized by
Transform. Each Transform below mounts a SceneNode, and a SceneNode contains a group of
Agents and a set of Renderables. This is the general structure of the current scene organization.

2. What is Transform?

Transform gives the translation, rotation, and scaling of an object in its space. There are two

main types of Transform.

a. Transform in 3D space.

b. Transform in the 2D GUI space.

Transform has a hierarchical relationship. When the parent Transform changes, all child

Transforms under the parent Transform will change recursively.

Transform

Transform

…
Transform

Transform

…

Transform

Scene Node

Renderable

Renderable

Renderable

Agent

Agent

Agent

3. What is a SceneNode?

SceneNode is a container containing Agents and Renderables. SceneNode and Transform hold

each other. The coordinate data of all Renderables under SceneNode comes from the Transform
that SceneNode holds. SceneManager will update all the Transform and SceneNode in the scene
every frame.

4. What is an Agent?

Agent is a game logic control object written in Swift, see the Agent System chapter.

Resource System:
1. Why do you need a Resource System?

There are two reasons,

a.Need to implement asynchronous loading of resources and caching of loaded resources.

b.Need to implement media-independent resource loading.

The first one is well understood, and the second is what media-independent resource reads?

After the game is packaged, the resources may exist in different places. It may be in the hard disk,
possibly in the flash memory, and possibly in the compressed package on the network. The
resources exist in various forms, but the use method is the same. It is a media-independent
resource load.

2. Supported resource formats

3. Dynamic update of resources

When you open the Editor, any changes to the resource system are detected in the Editor,

especially when you rename the resource. Any renaming of resources will lead to adaptive
adjustment of the entire scene.

4. Import the COLLADA file

The texture path used in a COLLADA is an absolute path. When the default project is created,

a subdirectory named COLLADATextures is automatically created. The textures referenced by the
COLLADA files in the default project are all in the COLLADATextures subdirectory.When these
COLLADA files are imported into the scene through the Import COLLADA submenu item of the
File menu, if the file references a texture, the corresponding texture is automatically imported into
the resource system.

扩展名 描述

wav Audio resource format

dae COLLADA resource format

ttf、ttc Font resource format

lic License resource format

vmi、vmp Material Instance and Material Prototype resource formats

plist Scene and project resource formats

png、dds Texture resource formats

Material System:
1. Why do I need a material script instead of writing a Shader?

There are two reasons.

a. Shader is related to the graphics API. Each graphics API has its own set of Shader, which

leads to the need to repeatedly write shaders across APIs.

b. Shader is related to the renderer. Different renderers (forward renderers, deferred shaders,

forward plus renderers, etc.) use different shaders, which causes Shader to repeatedly write.

2. How does it work?

As shown in the above figure, the material is divided into two parts: the material prototype and
the material instance. The material prototype is compiled into a set of Shader by the material
prototype compiler, and then the appropriate Shader combination is selected as the Render Pass
according to the different Renderable.On the other hand, the material instance is compiled by the
material instance compiler to be the arguments used by the Shader, the arguments are set to the
Render Pass, and the Vertex Buffer and Index Buffer are merged and finally submitted to the
renderer for rendering.

3.Material Instance Script Format

extern { user-defined exported Parameter Source }

pass (the parameter name used : the source of the parameter used)

[float4 output color variable name : render target]

{ material prototype script content }

Material Prototype

Material
Instance

Material
Instance

Material
Instance

Material Prototype
Compiler

Shader

Material Instance
Compiler

Uniform Arguments Of
Shader

Render Pass

Commit To
Render

Shader

Shader

Select By
Renderable

Vertex
Buffer

Index
Buffer

4. What is the parameter source?

The parameter source is an id, used to indicate where the parameters come from. There are

two types of parameter sources.

a. Built-in parameter source.

b. User-defined parameter source.

The built-in parameter source comes from the renderer, and the user's parameter source

comes from the material instance.

User-defined exported parameter
source

The parameter name
used and the source of
the parameters used,

separated by ":"

Output color variable
name and render target,

separated by ":"

Material prototype
script content

5. Built-in parameter source table

6. The syntax of the material prototype script content

参数源名称 类型 描述

VaryWorldPosition float4 World coordinates for each pixel

VaryProjPosition float4 Each pixel coordinates after the projection matrix

VaryTexCoord0 float2 The first set of texture coordinates

VaryTexCoord1 float2 The second set of texture coordinates

VaryTexCoord2 float2 The third set of texture coordinates

VaryTexCoord3 float2 The fourth set of texture coordinates

VaryNormal float3 The normal value of each pixel

VaryTangent float3 The tangent value of each pixel

VaryBinormal float3 The binormal value of each pixel

VaryColor float4 The color value of each pixel

CameraPosition float3 Camera world coordinates

CameraDirection float3 Camera world direction

ColorMap0 texture2D The first color texture, if you use the alpha test, the texture will be
used to render the alpha test of the shadow map

ColorMap1 texture2D The second color texture

ColorMap2 texture2D The third color texture

ColorMap3 texture2D The fourth color texture

NormalMap0 texture2D Normal texture

EnvironmentMap0 textureCube The first cube texture

EnvironmentMap1 textureCube The second cube texture

Syntax Variable declaration

Format data type variable name;

data type variable name = variable value;

Example float2 tmpTexCoord;

float2 tmpTexCoord = {0.0, 0.0};

Description Declaring variables and assigning them (optional)

Syntax Variable assignment

Format variable name = variable value;

Example tmpTexCoord = {0.0, 0.0};

7. Why use Shader nodes?

The concept of the Shader Node exists for easy use with editors. Ideally, you don't need to

write a single line of code. You can use the Editor to edit the material.In order to achieve this goal,
some commonly used Shader logic is encapsulated into the Shader Node for use by the Editor.
(Now VEngine doesn't implement the material editor. It will be added sometime in the future)

8.Common Shader Node table

Description Assign a value to a variable

Syntax Add Shader node

Format Shader Node name(Input parameters)[Output parameters];

Example Add(TexCoord, TexCoordOffsetValue)[tmpTexCoord];

Sub(1.0, TransparencyValue)[invertedTransparencyValue];

Description Add a Shader node

Shader Node name Input parameters Output parameters Description

TextureSample (texture2D texture,

float2 texture coordinate)

[float3

rgb texel value]

[float4

rgba texel value]

Sampling 2D textures
through a 2D texture
coordinate to output a texel
value

CubeTextureSample (textureCube texture,
float3 texture coordinate)

[float3

rgb texel value]

[float4

rgba texel value]

Sampling a cubic texture
through a 3D texture
coordinate to output a texel
value

NormalTextureSample (texture2D normal
texture,

float2 texture coordinate)

[float3

xyz normal value]

Sampling 2D normal
textures through a 2D
texture coordinate to
output a normal value

Add (float value a,

float value b)

(float2 value a,

float2 value b)

(float3 value a,

float3 value b)

(float4 value a,

float4 value b)

[float output value]

[float2 output value]

[float3 output value]

[float4 output value]

Add the two values a and b
to output

Sub (float value a,

float value b)

(float2 value a,

float2 value b)

(float3 value a,

float3 value b)

(float4 value a,

float4 value b)

[float output value]

[float2 output value]

[float3 output value]

[float4 output value]

Subtraction the two values
a and b to output

Mul (float value a,

float value b)

(float2 value a,

float2 value b)

(float3 value a,

float3 value b)

(float4 value a,

float4 value b)

[float output value]

[float2 output value]

[float3 output value]

[float4 output value]

Multiply the values of a and
b to output

Scale (float input value,

float scaling value)

(float2 input value,

float scaling value)

(float3 input value,

float scaling value)

(float4 input value,

float scaling value)

[float output value]

[float2 output value]

[float3 output value]

[float4 output value]

Multiply the input value by
the scaling value to output

Clamp (float input value,

float min,

float max)

(float2 input value,

float min,

float max)

(float3 input value,

float min,

float max)

(float4 input value,

float min,

float max)

[float output value]

[float2 output value]

[float3 output value]

[float4 output value]

Limit the input value
between the given
maximum and minimum
values

Pow (float input value,

float power)

(float2 input value,

float power)

(float3 input value,

float power)

(float4 input value,

float power)

[float output value]

[float2 output value]

[float3 output value]

[float4 output value]

Performs a power operation
on the input value

Dot (float2 value a,

float2 value b)

(float3 value a,

float3 value b)

(float4 value a,

float4 value b)

[float2 output value]

[float3 output value]

[float4 output value]

Dot product of two vector
values a and b to output

Cross (float2 value a,

float2 value b)

(float3 value a,

float3 value b)

(float4 value a,

float4 value b)

[float2 output value]

[float3 output value]

[float4 output value]

Cross product of two
vector values a and b to
output

Normalize (float2 input value)

(float3 input value)

(float4 input value)

[float2 output value]

[float3 output value]

[float4 output value]

Normalized input vector
value

Shader Node name Input parameters Output parameters Description

9.Material Instance Format

instance (“ Material prototype name ”, Additional attributes (optional))

{ Material Instance Script Contents }

10.The syntax of the material instance script content

Mix (float value a,

float value b,

float interpolant)

(float2 value a,

float2 value b,

float interpolant)

(float3 value a,

float3 value b,

float interpolant)

(float4 value a,

float4 value b,

float interpolant)

[float output value]

[float2 output value]

[float3 output value]

[float4 output value]

Interpolation of the input
value a and the input value
b to output

GaussianBlurSample (texture2D texture,

float2 texture coordinate,

float2 texture resolution,

float blur radius)

[float4 rgba texel
value]

Gaussian blur sampling of a
given radius for a texture,
outputting a texel (blur
radius 1 to 5, poor
performance)

HoriGaussianBlurSample2 (texture2D texture,

float2 texture coordinate,

float2 texture resolution)

[float4 rgba texel
value]

Horizontal Gaussian Blur
sampling with a radius of 2
pixels for a texture,
outputting a texel (good
performance)

VertGaussianBlurSample2 (texture2D texture,

float2 texture coordinate,

float2 texture resolution)

[float4 rgba texel
value]

Vertical Gaussian Blur
sampling with a radius of 2
pixels for a texture,
outputting a texel (good
performance

AlphaTest (float4 input color) [float4 output color] Alpha test by the alpha
value of the input color,
usually used at the end of
the material script

Shader Node name Input parameters Output parameters Description

Additional attributes (optional)

Material prototype name

Material Instance Script
Contents

Syntax Argument assignment

Format data type argument name = argument value;

Example float4 EmissionColor = {0.0, 0.0, 0.0, 1.0};

float TransparencyValue = 0.5;

Description Assign a basic type of argument

Syntax Texture assignment

Format texture type texture argument name = “texture resource name”;

texture type texture argument name (texture attributes) = “texture resource name”;

Example texture2D DiffuseMap (Filter:Bilinear, WrapU:Repeat, WrapV:Repeat) =
“S1000/10water26.dds”;

texture2D DetailNormalMap = “default_normal_map.png”

Description Assign a texture type of argument

Animation System:
1.How does it work?

As shown in the above figure, the core of the animation system is Actor, and Actor is a state
machine.An Actor contains several Animation States. Each Animation State corresponds to a
COLLADA animation. There is an Animation Blending State used to implement multiple animation
blending between multiple Animations.Actor is always running in a single animation state or mixed
animation state.The Actor calculates all the skeletal matrices for each frame of the entire
animation and passes these matrices to the Skins attached to the Actor. Finally submitted to the
Renderable for rendering.

2.How to use animations?

a. Separate 3D models and animations when exporting COLLADA resources. The animations

are exported as separate files.

b. Put all the skinned 3D models and animation resources into the Characters directory (you

can create subdirectories for easy management).

c. Open the Editor, it will automatically scan all COLLADA resources, and automatically

generate animation reference files in the game logic project.

d. Open the game project with Xcode and write the corresponding ActorAgent (for details, see

the Agent System section).

e. Compiling the game project will automatically export all Agent information. At this time, open

the Editor and add the ActorAgent to the scene node in the agent view.

COLLADA
Animation

COLLADA
Animation

Skin

COLLADA
Animation

Animation
State

Animation
State

Animation
State

Renderable

Actor

（状态机）

Skin

Renderable

Skin

Renderable

Animation Blending State

Agent System:
1.How does the Agent System work?

As shown in the figure, a single thread will traverse all Scene Nodes within the scene at the
same frequency as the rendering thread, and update the Agent under each Scene Node.

There are three types of Agents, a.SceneNodeAgent. b.ActorAgent. c.GUIAgent.

SceneNodeAgent can control the translation, rotation, scaling animation of a 3D Scene Node,

and the animation switching of ActorAgent under the Scene Node, as well as the material
arguments of the renderable.

ActorAgent is mainly used to manage the animation of an Actor.

GUIAgent is mainly used to handle the logic of the GUI.

2.How does a single Agent work?

Agent

SceneNode SceneNode … SceneNode

Traversing Agents in all Scene Nodes

Agent …
Agent

Update all Agents

State

open func enter()

{…}

open func leave()

{…}

open func update(…)

{…}

State

…

State

Agent
Current state

As shown in the above figure, Agent is a state machine. Each Agent contains several states.
Each state contains at least three methods: enter, leave, and update. And there is only one current
state.

a. When an agent updates it will call its own current state of the "update" method.

b. When a state transitions to another state, the "leave" of the current state and the "enter"

method of the target state are called. After the conversion is completed, the target state becomes
the new current state.

3. Write the simplest Agent code

a. First open the macOSPlayer_Debug.xcodeproj in the game project.

b. Add the Swift file in the following location. The added file is guaranteed to be placed in the

Scripts subdirectory under the project.

Add files here

Make sure the added file is in
this directory

c. Write the following in the newly added Swift file.

d. Compile the entire project.

e. Find VEngineLogicInterface.mm

See the following contents in the file, indicating that three empty Agents have been
successfully added.

4. Use Agent

a. Select the Scene Node that needs to add the Agent.

b. Follow the flow below.

5.SceneNodeAgent

a. The default SceneNodeAgent base class already contains six states EmptyState,

RepeatState, MoveToState, RotateToState, ScaleToState, and TransitToState.

b. If the SceneNodeAgent class and the derived class have internal access permissions that

are open and inherit from SceneNodeState and SceneNodeStateInterface, the subclass will be
added as a State to the Agent object.

c. If the derived class of SceneNodeAgent contains more than one state, the first state in these
states will be used as the initial state after the derived class is initialized. If the derived class does
not contain a state, EmptyState is used as the The default state of the scene agent.

6.ActorAgent

a. The state of each ActorAgent corresponds to a COLLADA animation file. When the

ActorAgent is instantiated, the COLLADA animation file corresponding to all its states is
automatically loaded into the Actor object.

b. Like SceneNodeAgent, there is a default state, which is the default action. When the
ActorAgent starts, it will automatically loop the default action.

1. Click on Add Agent's button

2. Popup Agent Panel
3. Select Agent
Type here

4. Select Agent
added to the
node here

7.GUIAgent

a. A GUIAgent has only five states, normal state, hovering state, dragging state, selected state,

and pressed state. The "normal state" is the initial state of a GUI widget. The "hovering state" is
the state of the mouse hovering over the GUI widget. (For mobile platforms that do not have a
mouse, this state is entered shortly before the state is switched to the "dragging state".),
"dragging state" is the state of the widget when dragging a GUI widget, "selected state" is the
state after the GUI Widget is selected, and "pressed state" is the state after the GUI Widget is
pressed as a button.

b. The GUIAgent needs to be used in conjunction with the GUI Widget's behavior. For GUI
Widget behavior, see the GUI System chapter.

8. The simplest state operation

As shown in the above figure, the current state is obtained by the "GetCurrentState" method of
the derived class of the SceneNodeAgent of type MageMainAgent, and then converted to the
"MageMainAgent.RunState" state by the operator "=>".

The state transition of the ActorAgent is shown in the above figure. Inside a SceneNodeAgent,
the following method can be used:

self[ActorAgent derived class name.self]

To obtain the ActorAgent under the current SceneNode, the state transition method is similar to
the SceneNodeAgent.

The GUIAgent cannot manually control the state transition. The state transition of the GUIAgent
completely depends on the behavior of the GUI. For related contents, refer to the GUI System
chapter.

GUI System:
1.GUI layers

The GUI is divided into two layers: the main GUI layer and the second GUI layer. The update of
the main GUI layer is synchronized with the main rendering thread, and the update of the second
GUI layer is asynchronous.

As shown in the above figure, any scene contains a Scene Node named “Container”. Any GUI
widget under this node will be added to the second GUI layer.

The GUI nodes can be mounted on the other 3D nodes. Any GUI nodes mounted on the 3D
nodes will be added to the main GUI layer.

2.GUI Widget behavior

GUI Widget events are divided into three "Mouse Moved", "Mouse Down", and "Mouse Up".

There are five types of behaviors: "Empty", "Hoveable", "Pressable", "Leaveable", "Draggable",

and "Draggable By Selected".

As shown in the above figure, the Widget's overall event response behavior is achieved by

combining the Widget's behavior on three events.

Collision System:
1. Classification of collision detectors

Collision detectors are classified into global collision detector and local collision detector.

2.How does the global collision detector work?

a. Iterates over all Renderables under Scene Nodes marked as Collider.

b. Add these Renderables AABBs to the global Collision BVH tree.

c. Through the global BVH tree to find Scene Nodes that collide with each other.

d. Pass collision information to the Scene Nodes where the collision occurred.

3. How does the local collision detector work?

a.When a scene node is found during the loading of the scene, a BVH Query tree needs to be

created, and then a BVH tree with the exact triangle of the scene node is constructed.

b.In the script invocation phase, collision detection can be performed by using a shape in the

ray, sphere, or capsule, and a scene node that establishes a BVH Query tree.

c. The detection results can be used to control the characters in the game.

License System:
1. How does the license system work?

a. The license is bundled with the Bundle Identifier on the same platform. A license for the

same platform corresponds to a Bundle Identifier.

b. The Player runs its own Bundle Identifier to check if there is a suitable license. If not, it will

display the “unregistered” label in the upper left corner of the screen.

2. How to create a license?

If you want to create a license, you must unlock the capabilities of the license creator.

After the IAP payment is completed, the function of creating a license can be used.

	Introduction：
	Main Features：
	Basic architecture:
	1.Editor
	2.Player
	Project Window：
	Project Composition:
	1. Resource Directory
	2. Xcode project-related
	Editor:
	1. Basic layout
	2. Basic operation
	Scene Node System:
	1.The hierarchical structure of the scene
	2. What is Transform?
	3. What is a SceneNode?
	4. What is an Agent?
	Resource System:
	1. Why do you need a Resource System?
	2. Supported resource formats
	3. Dynamic update of resources
	4. Import the COLLADA file
	Material System:
	1. Why do I need a material script instead of writing a Shader?
	2. How does it work?
	3.Material Instance Script Format
	4. What is the parameter source?
	5. Built-in parameter source table
	6. The syntax of the material prototype script content
	7. Why use Shader nodes?
	8.Common Shader Node table
	9.Material Instance Format
	10.The syntax of the material instance script content
	Animation System:
	1.How does it work?
	2.How to use animations?
	Agent System:
	1.How does the Agent System work?
	2.How does a single Agent work?
	3. Write the simplest Agent code
	4. Use Agent
	5.SceneNodeAgent
	6.ActorAgent
	7.GUIAgent
	8. The simplest state operation
	GUI System:
	1.GUI layers
	2.GUI Widget behavior
	Collision System:
	1. Classification of collision detectors
	2.How does the global collision detector work?
	3. How does the local collision detector work?
	License System:
	1. How does the license system work?
	2. How to create a license?

